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In this work, treating an artery as a prestressed thin-walled elastic tube and the blood as an inviscid
fluid, the interactions of two nonlinear waves propagating in opposite directions are studied in the
longwave approximation by use of the extended PLK (Poincaré-Lighthill-Kuo) perturbation method.
The results show that up to O(k>), where k is the wave number, the head-on collision of two solitary
waves is elastic and the solitary waves preserve their original properties after the interaction. The
leading-order analytical phase shifts and the trajectories of two solitons after the collision are derived

explicitly.
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1. Introduction

A remarkable feature of arterial blood flow is its pul-
satile character. The intermittent ejection of blood from
the left ventricle produces pressure and flow pulses
in the arterial tree. Experimental studies reveal that
the flow velocity in blood vessels largely depends on
the elastic properties of the vessel wall, and that they
propagate towards the periphery with a characteris-
tic pattern [1]. Theoretical investigations for the blood
waves have been developed by several researchers [2 —
5] through the use of weakly nonlinear theories. It is
shown that the dynamics of the blood waves are gov-
erned by perturbed Korteweg-de Vries (KdV) equa-
tions and their modified forms. The effects of higher-
order approximations in a fluid-filled elastic tube with
stenosis was studied by us [6] and the KdV equation
with variable coefficients was obtained for the first-
order term in the perturbation expansion, and the lin-
earized KdV equation with a non-homogeneous term
was obtained for the second-order term in the expan-
sion. The solitary wave model gives a plausible expla-
nation for the peaking and steepening of the pulsatile
waves in arteries.

In the process of solitary wave propagation in arter-
ies, the wave-wave interactions is another fascinating
feature of solitary wave phenomena because the colli-
sion of solitary waves exhibits many particle-like fea-
tures. The unique effect due to the collision is their
phase shifts. There are two distinct solitary wave in-

teractions; one is the overtaking collision and the other
is the head-on collision [7]. The overtaking collision
of solitary waves can be investigated within the con-
text of multisoliton solutions of the KdV equation. The
head-on collision between two solitary waves must be
studied by a suitable asymptotic expansion to solve
the original fluid and tube equations. For such solitary
waves it is convenient to use the extended Poincaré-
Lighthill-Kuo (PLK) method [7, 8].

In the present work, treating the arteries as pre-
stressed thin-walled elastic tubes and the blood as an
inviscid fluid, and utilizing the extended PLK method,
we studied the interaction of two weakly nonlinear
waves, propagating in opposite directions, in the long-
wave approximation. The results show that, up to
O(k?), the head-on collision of two solitary waves is
elastic and the solitary waves preserve their original
properties after the interaction. The leading-order ana-
Iytical phase shifts and the trajectories of two solitons
after the collision are derived explicitly.

2. Basic Equations and Theoretical Preliminaries
2.1. Equation of the Tube

In this section we shall derive the basic equations
governing the motion of a prestressed thin elastic tube
filled with an inviscid fluid. For that purpose, we con-
sider a cylindrical long thin tube of radius Ry, which
is subjected to a uniform inner pressure Py and an ax-
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ial stretch ratio A;. Let the radius of the cylindrical
tube after such an axially symmetric finite deforma-
tion be denoted by rg. Upon this static deformation we
superimpose a finite, time-dependent radial displace-
ment u*(z*,1*). The effect of axial displacement will be
neglected. Thus, the position vector of a generic point
on the tube wall may be represented by
r=(ro+ue,+z'e;, zZ"=ANZ" (1D

e, eg and e; are the unit base vectors in cylindrical
polar coordinates, Z* is the axial coordinate of a mate-
rial point in the undeformed configuration and z* is the
spatial coordinate after finite deformation.

The unit tangent vector ¢ to the meridional curve and
the unit exterior normal n to the deformed membrane
are given by

t—l o’ + _ L2 (2)
= az*er el ni/\ er az*ez )

where A is defined by

au* 2
A=+ (=) 3
1+ (527 G
The principal stretch ratios in the meridional and cir-
cumferential directions may be given by

M=AL, A =2Rg+u"/R, “4)
where Ag = ry/Ry is the initial stretch ratio in the cir-
cumferential direction.

Let 77 and T, be the membrane forces acting along
the meridional and circumferential directions, respec-
tively. Then, the equation of radial motion of a small
tube element placed between the planes z* = const.,
7* 4+ dz* = const., 6 = const. and 6 + d6 = const. is
given by

0 [(ro+u*)du* 3 o
—hA + g [T pye T]] +P (r0+u ) = s
HRy 9*u*
po A, o2’

where py is the mass density of the tube, P* is the total
fluid pressure and H is the initial thickness of the tube.
Here, to be consistent with soft biological tissues, we
assume that the tube material is incompressible.

Let uX(A1,A;) be the strain energy density function
of the tube material, where p is the shear modulus of
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the tube material. Then the membrane forces are ex-
pressed as

ogHE L Hox
RR s RPTRL
Introducing (6) into (5) the equation of motion in the
radial direction reads
. MH 00X
B Az("‘O + M*) a_AZ
URoH 0 ou*/dz* 0x
" otz { [+ (u jaz 2] /2 W} 2
poHRy  9°u*

(6)

This gives the relation between the radial displacement
and the inner pressure applied by the fluid.

2.2. Equations of the Fluid

Although blood is known to be an incompressible
viscous fluid, as pointed out by Rudinger [9] in a num-
ber of applications, e. g. flow in large blood vessels, as
a first approximation, the effect of viscosity may be ne-
glected. As a result of this simplifying assumption, the
variation of the field quantities in the radial direction
may be disregarded. However, the radial changes are
included by taking the variation of the cross-sectional
area into account. The equation of mass conservation
of the fluid may be given by

A D, .
3 + pye (A*w*) =0, )

where A* stands for the cross-sectional area of the tube
and w* is the axial velocity of the fluid. Recalling the
definition of A* in terms of the inner radius of the tube,
i.e., A* = m(rg+u*)?, (8) may be written as
Ju ow ou*
2_ * 2 * —
g T o) S s
The equation of balance of the linear momentum in the
axial direction is given by
oaw*  ,ow* 1 dP*
-~ 4w 7
or* dz*  pr 07"
where pr is the mass density of the fluid body.

At this stage, it is convenient to introduce the fol-
lowing non-dimensionalized quantities:

* *

0. C)]

0, (10)

7*=Rpz, u'=Rou, w =wvyw,

:—[’

Vo
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where vg is the Moens-Korteweg wave speed. Intro-
ducing (11) into (7), (9) and (10), we obtain

P =pwi(po+p), (11)

4ty L 9%
PO P = e + 1) 0o

o 3{ A3z a_z} ”
(o 1) 2 \[1+ (/oo 2 a2, § 12
m o’u

Y Lo tw o
du ow du
ow ow dp
et =0 (14)

For our future purposes we need the quadratic series
expansion of the pressure in terms of the radial dis-
placement u. If this is done, from (12) we have

Bt P — oo T —an (1)
P =pru-+pou Oioazz 1\ 3z

o o%u m du

2 e 15
+<)Le 2"‘1>“az2+xgazat2 (15)
__m Qiﬂ

Ao

where the coefficients oy, @y, B; and 3, are defined by

18):‘ o 1 9’z |
T A od Y T o0 oo, Y

1 9’z 1 09X
Bi = 5 — 753 | lu=0,
Aodz OAZ A2, O
ﬁ 1 83 | ﬁl
2T A A3 0T A

(16)

Equations (13), (14) and (15) give sufficient relations
to determine the unknowns u, w and p.

3. Interaction of Solitary Waves in Blood Vessels

We shall assume that two solitons A and B, which
are asymptotically apart from each other in the initial
state, travel toward each other. After some time they
collide and then depart. In order to analyze the effect
of the collision, we shall employ the extended PLK
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perturbation method with the technique of strained co-
ordinates. According to this method we introduce the
following stretched coordinates:

é —89(5»77)7
n —8(15(‘5’77),

g2 (z—cat) =
81/2(z+th) =
=k,

a7)

where k is the wave number, ¢4 and cp are two con-
stants to be determined from the solution, and 6(&,1)
and ¢(&,n) are two unknown phase functions to be
determined from the solution.

We shall assume that the constants ¢4, cg and the
functions 0 and ¢ can be expanded into asymptotic se-
ries in k as

cpa=coté&ca+..., cp=co+E€cpr+...,

6 =6o(n)+61(S,n)+ ..., (18)
¢ =00(5)+€01(5,m)+....
Then, the partial derivatives =—— and = can be ex-
0z ot

pressed as follows:

oy 9 déo\ d
—:sl/z<l+£ 0> +e 1/2<1+8—) —,
& d¢ / on

0 do 0
3 =¢!/? [—Co-i-s (_CA1+CO 0)] 85

0
81/2 {co—i—s <031 _Cofﬂ %

We shall further assume that the field variables u, w
and p may be expressed as asymptotic series in € as
follows:

(19)

u:8u1+£2u2+..., w:£w1+£2w2+...,

5 (20)
pP=€Ep1+E&prt....

Introducing the expansions (19) and (20) into (13)—
(15) and setting the coefficients of like powers of k
equal to zero, the following sets of differential equa-
tions are obtained:

O(¢€) equations:

8 8 8w1 8w1
2086 +2¢ Oa +a’9( aé ) Oa
owq ow;  dpi  Idp1 (21)
—C0=+ 8& +Co “rx-i-— 0,
p1 = Puy.
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o(€?) equations:
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8 u 8u2 sz sz d@o 8u1 d(P() 8u1
20085 +ZCOB_+M(8§ )—I—Z( car o )85 2( 1—Co¥ =
d60 awl d(P() aw1 8w1 8w1 au1 aul -
o ag thag ag T (85 )” (5 +5)-°
oWy dwy  dpy | Ip2 3W1 dgo\ ow;  d6y dp;  dgo Ip;
C°a§+°an+¥+_+ CA1+Co 85 I_COE —+HY+EW (22)
d d
i ( o +ﬂ) —0,
ou o%u o%u mct [ 9°u o%u o%u
_ 2 1 1 1 0 1 1 1
pz—ﬁluz-i-ﬁzul O(o(aéz +Za§an+an2)+ (afz zaéan+8n2 .
For the solution of the set (21), we shall eliminate w;  The solution of this equation yields
between these equations and obtain
ur =U(§)+V(n), (26)

(20 B\ (Fm Pum
YA E
ZCQ [31 8 u

+2<19 + ) 9&an =0.

It can be shown that, in the longwave limit, c¢ is the
phase velocity and may be given by

(23)

AoBB
2 APl
o= - (24)
Then, (23) reduces to
82u1
m =0. (25)

where the functions F(&,7n) and G(&,1) are defined by

2 dUu 6C0

F(&,n)= (l_ecAlf - A_gUi_@ + (—%031

(4&%_2& )dV

Ae dé A2 dT]
@m0y (i
co Ao ) d&3

oy mey \ dV
(o7t ) -
_ﬂd_"o_<@_4ﬂ>v}
Ao dn o

_|_

2[32 4c0
( R
au
dE

where U(§) and V(n) are two unknown functions
whose governing equations will be obtained later.
Introducing (26) into (21) we have

2

= 7 27)

U +v).

To obtain the solution to O(¢?) order equations, we in-
troduce the solution given in (26) and (27) into (22),

which yields
2co, Our Oun owy  dws
E(—g W)—'—(W—'— )=F(&,n),
2C() auz auz aWZ aW2 (28)
E(f‘Fw)‘F( 2 +W)—G(é,n),
L0V (Ladh )0
dn = A dn Ao dn d&
dUu ZCAl dUu
U—+ (29)
dé 19 dé]

Jobr 2t

dn = A dn

{_4&%_ (2_32_@) U} v
Ae dé Cco 162 dT].
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The solution of the homogeneous equation given
in (28) yields the result similar to the O(€) case. For
our future use, we need the particular solution of (28).
The particular integral of (28) gives

Ao

Uz =
8Co

{ [+ ctenion
+ [ logtm - rtmlag b,
Ll (30)
w=3{ [MFE) 6o
- [Froe - re i’

Introducing the expressions of F(&,n) and G(&,1)
into (30) we have

= g [ En + Ba(m)E +42(8) + B1 ()
-amgE -5
+4(;—%—f—j) vEvm), 6

wa= [0~ Bam)E + B ()~ 42(8)
—am g +C@5]

where various functions appearing in (31) are defined
by

_4eardU (2B, 10co AU
M) = @ ( 2 )Udé
4 [ %o _ meo v
() Aelz déS’

(0 _ma &V (B,
Bl(n)(% leflz>dﬂ2+<l§ Co)v’

(% ma\EU (o B

A2(8) = <Co Ao, ) dg? - <l§ CO>U ’

4cpy dV 2[32 10cq dv
BZW:ATE‘( QLZ )

n oy mey \ d°V
co oA, d7737
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800 Zﬁz 6Co ¢ ’ ’
C o+ | — — =5 / U(&)dE. (32
26) = oo (253 [uieha e
Since we are concerned with the localized solutions
for the field quantities U (&) and V(n), these func-
tions must be bounded. As can be seen from (31)
as £,1M — oo, the solution becomes unbounded un-
less

A1(§) =0, By(n)=0, (33)

which yield the following ordinary differential equa-
tions for U and V:

dU v U
- — _— —_— = 4
Al e .UIUdé “2d§3 0, (34
av av d*v
CBl——MV —— =0, (35)
dn an~ “an?
where the coefficients (| and y, are defined by
~(AeB2 | Sco _ Ao (meo o
o= ( 20 270 ok o) GO

As a matter of fact, (34) and (35) are the travelling
wave form of the Korteweg-de Vries equations given
by

oU U U

= = = =0 37

ar TRV —HLZBZ? ’ &7
v oV o’V
a +:u“lva +.u'28 3 =0, (33)

where we have set
t=e"%, z1=¢"(z—cot),
=&z +cot), E—eb(n) =z —cart, 39)

n—eo(§) =z +cpit.

Due to the existence of the functions 8y(n) and ¢o (&),
the wave trajectories are not straight lines in the z¢, T
space, they are rather some curves. This is the result of
the head-on collision of waves.

Here we notice that 6y(n) and ¢ (&) are some un-
known functions to be determined. Without losing the
generality of the problem we may set the coefficient
functions C; (1) and C(&) equal to zero, which yields
to

8CO 2[32 6C0 n / r
e+ (22-53) [Ty ian' <o o

€0
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8co Zﬁz 6¢o /‘: ’ /

2= 4+ =—-—= U dé =0. (41
(@) + (2252 [Tu@e =0 @
These equations make it possible to determine
the unknown functions 6p(n) and ¢o(&), provided
that U(&) and V(n) are known. As a matter of fact,
U(&) and V(n) can be obtained from the solution of
the ordinary differential equations (34) and (35). These
differential equations assume a solution of the follow-
ing form:

U =asech’A&, V =bsech’un, 42)
where a and b are the amplitudes of the solitary waves
and A and u are two constants to be determined from
the solution of (34) and (35). Introducing (42) into (34)
and (35) we obtain

120y ’ 12, ’ (43)

O L DL
Al 35 Bl 3~

Having obtained the solution for U(&) and V(n),
through the use of (40) and (41) one can determine the
phase variables 6y(7) and ¢o (&) as

3 1216\ /2
90(77)_(m—&>< Hz) tanh 1,

2B M
(3B (12maN'? o
¢0(§)<m—2—[31>< m ) tanhA&.

Hence, up to 0(83/ 2), the trajectories of the two soli-
tary waves for weak interaction are

é = SI/Z(Z—Cot—ScAlt)

12
-H;‘(i—&) (12'uzb) tanhun + 0(e*/?),
4k 2B H 45)

n = &' (z+ cot + ecpit)

3B (T2 "
+8(47Le 2131)( ™ )tanh/lc‘;—i—O(s ).

To obtain the phase shifts after the head-to-head colli-
sion of the solitary waves, we assume that the solitary
waves, characterized by A and B, are asymptotically
far from each other at the initial time (f = —oo). The
solitary wave A is at & = 0, 1 = —oo, and the solitary
wave Bis at 1 = 0, & = oo, respectively. After the head-
to-head collision (¢ = oo), the solitary wave B is far to
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the right of the solitary wave A, i. e., the solitary wave A
is at & =0, 1] = oo, and the solitary wave Bis at 1 =0,
& = —oo. For these limiting cases the trajectories (45)
become

30 B\ [ 12mb\'?
=(co+e ti81/2<———)< > ,
¢=(eotecm) 4de 2P i

30 B [12ma)'?
— 2 2 _ P2
z=(co+ecp )t e (416 2[31)( 0 ) )

(46)

These equations are parallel straight lines which repre-
sent the asymptotes of the corresponding trajectories.

Using (45), we obtain the corresponding phase shifts
Ax and Ap as follows:

Ap = EI/Z(Z—CAI)“::()J]:W —EI/Z(Z—CAI)“::()J]:,W

_g@i_@)vwwyﬂ
-\ 24 B Hi '

AB = 81/2(Z+CBI)‘T7:07‘::,W —81/2(24‘6‘3[)‘77:07‘::&
_g@i_@)vwwyﬂ
24  Bi M '

4. Numerical Results and Discussion

(47)

(48)

For the numerical analysis we need the constitutive
equations for the elastic tube material. For that pur-
pose we shall use the constitutive equations proposed
by Demiray [10] for soft biological tissues as

£ = s {explah —3)] -1},

where o is a material constant and /; is the first in-
variant of the Finger deformation tensor and defined
by I} = A2+ A} + 1/22AZ. Introducing (49) into (23),
the coefficients o, By, B1 and B3, are obtained as:

2 1
Oy = (lz —@ F(le’lz)a
1 1
(L L \Fen
Bo (lz lg)t}) (g, Az),
Br=|—2 PR S o PP
1= Agls Aelz ] A{glzz CREZR)
10 o 7 1
_ 5 Ao — —
[ Q@*M@<+wy><9me

o2 1
2% (- —o
*_MM<6 Az

(49)

3
) :|F(A’97A'Z)v (50)
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z/cm

25

15 ¢

27

where the function F'(Ag, A;) is defined by

1
lglzz —3)] . (5D

This theoretical model was compared by Demiray [11]
with the experimental measurements by Simon et
al. [12] on a canine abdominal artery with the char-
acteristics R; = 0.31 cm, Ry = 0.38 cm and A, = 1.53,
and the value of the material constant & was found to
be ov = 1.948. Using this value of the material constant
and 1.6 for A9 = A;, the coefficients o, B1, B2, Ui,
U were calculated. The result is

F(Ag,A;) =exp [(x (lg +AZ+

o) B>

% _ 0266, P2_3348,
Bi Bi

W =4911, w=—0.0363.

Setting € = 0.5 and the wave amplitudesa = —1, b =
—2, the phase functions & and 1) take the forms

£ =0.707(z— 16.21¢) — 0.606 tanh(4.7487), (52)

1 =0.707(z+ 17.211) — 0.429 tanh(3.358&). (53)

As is seen from these expressions the trajectories are
not straight lines anymore, they are rather some curves
in the (z,t) plane.

Setting & = & in (52) and (53) we obtain

& =0.707(z— 16.21¢) — 0.606 tanh(4.7487), 50
n =0.707(z+ 17.21¢) — 0.429 tanh(3.358&).

1
0.02

0‘(') 7 Fig. 1. Variation of a trajectory
t/s for &y = 1.0.

This gives the equation of the trajectory for & = &.
For large values of 1 (n — =), (52) becomes

£y = 0.707z — 11.46t £ 0.606. (55)

These are the equations of the asymptotes, which are
parallel lines of the trajectory. Similarly, the equation
of the trajectory for 1 = 1y may be obtained as

& =0.707(z— 16.211) — 0.606 tanh(4.7481,),

56

Mo = 0.707(2+ 17.21) — 0.429tanh(3.358¢). °"
For large values of & (& — =e0), (56) becomes

Mo =0.707z+12.167t £ 0.429. (57)

The trajectories are plotted numerically and the results
are depicted on Figs. 1 and 2 for &y = 1.0 and g = 1.0.
As can be seen from these figures, for large values of &
and 71 the trajectories are two parallel lines, but during
the collision it becomes a sharp curve that connects
these two lines. This means that, when the collision
process is completed, there will be a phase shift.

5. Conclusion

By use of the extended PLK perturbation method,
the head-to-head collision of two solitary waves in
an artery is investigated. The result obtained shows
that, up to O(k*), the head-to-head collision of
two blood solitons is elastic and the solitons pre-
serve their original properties after the collision. The
leading order analytical phase shifts of a head-to-head
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Fig. 2. Variation of a trajectory

z/cm
25
2
1.5
1
0.5
-0.04 -0.02 0.02 0.04 .06 0.08
05 t/s

collision between two solitary waves are explicitly de-
rived. The higher-order corrections may give some sec-
ondary structures in the collision event, especially for
the large amplitude case.
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