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In this work, treating an artery as a prestressed thin-walled elastic tube and the blood as an inviscid
fluid, the interactions of two nonlinear waves propagating in opposite directions are studied in the
longwave approximation by use of the extended PLK (Poincaré-Lighthill-Kuo) perturbation method.
The results show that up to O(k3), where k is the wave number, the head-on collision of two solitary
waves is elastic and the solitary waves preserve their original properties after the interaction. The
leading-order analytical phase shifts and the trajectories of two solitons after the collision are derived
explicitly.
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1. Introduction

A remarkable feature of arterial blood flow is its pul-
satile character. The intermittent ejection of blood from
the left ventricle produces pressure and flow pulses
in the arterial tree. Experimental studies reveal that
the flow velocity in blood vessels largely depends on
the elastic properties of the vessel wall, and that they
propagate towards the periphery with a characteris-
tic pattern [1]. Theoretical investigations for the blood
waves have been developed by several researchers [2 –
5] through the use of weakly nonlinear theories. It is
shown that the dynamics of the blood waves are gov-
erned by perturbed Korteweg-de Vries (KdV) equa-
tions and their modified forms. The effects of higher-
order approximations in a fluid-filled elastic tube with
stenosis was studied by us [6] and the KdV equation
with variable coefficients was obtained for the first-
order term in the perturbation expansion, and the lin-
earized KdV equation with a non-homogeneous term
was obtained for the second-order term in the expan-
sion. The solitary wave model gives a plausible expla-
nation for the peaking and steepening of the pulsatile
waves in arteries.

In the process of solitary wave propagation in arter-
ies, the wave-wave interactions is another fascinating
feature of solitary wave phenomena because the colli-
sion of solitary waves exhibits many particle-like fea-
tures. The unique effect due to the collision is their
phase shifts. There are two distinct solitary wave in-

0932–0784 / 07 / 0100–0021 $ 06.00 c© 2007 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

teractions; one is the overtaking collision and the other
is the head-on collision [7]. The overtaking collision
of solitary waves can be investigated within the con-
text of multisoliton solutions of the KdV equation. The
head-on collision between two solitary waves must be
studied by a suitable asymptotic expansion to solve
the original fluid and tube equations. For such solitary
waves it is convenient to use the extended Poincaré-
Lighthill-Kuo (PLK) method [7, 8].

In the present work, treating the arteries as pre-
stressed thin-walled elastic tubes and the blood as an
inviscid fluid, and utilizing the extended PLK method,
we studied the interaction of two weakly nonlinear
waves, propagating in opposite directions, in the long-
wave approximation. The results show that, up to
O(k3), the head-on collision of two solitary waves is
elastic and the solitary waves preserve their original
properties after the interaction. The leading-order ana-
lytical phase shifts and the trajectories of two solitons
after the collision are derived explicitly.

2. Basic Equations and Theoretical Preliminaries

2.1. Equation of the Tube

In this section we shall derive the basic equations
governing the motion of a prestressed thin elastic tube
filled with an inviscid fluid. For that purpose, we con-
sider a cylindrical long thin tube of radius R0, which
is subjected to a uniform inner pressure P0 and an ax-
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ial stretch ratio λz. Let the radius of the cylindrical
tube after such an axially symmetric finite deforma-
tion be denoted by r0. Upon this static deformation we
superimpose a finite, time-dependent radial displace-
ment u∗(z∗, t∗). The effect of axial displacement will be
neglected. Thus, the position vector of a generic point
on the tube wall may be represented by

rrr = (r0 + u∗)ererer + z∗ezezez, z∗ = λzZ∗. (1)

ererer, eθeθeθ and ezezez are the unit base vectors in cylindrical
polar coordinates, Z∗ is the axial coordinate of a mate-
rial point in the undeformed configuration and z∗ is the
spatial coordinate after finite deformation.

The unit tangent vector ttt to the meridional curve and
the unit exterior normal nnn to the deformed membrane
are given by

ttt =
1
Λ

(
∂u∗

∂z∗
ererer +ezezez

)
, nnn =

1
Λ

(
ererer − ∂u∗

∂z∗
ezezez

)
, (2)

where Λ is defined by

Λ = [1 +(
∂u∗

∂z∗
)2]1/2. (3)

The principal stretch ratios in the meridional and cir-
cumferential directions may be given by

λ1 = Λλz, λ2 = λθ + u∗/R0, (4)

where λθ = r0/R0 is the initial stretch ratio in the cir-
cumferential direction.

Let T1 and T2 be the membrane forces acting along
the meridional and circumferential directions, respec-
tively. Then, the equation of radial motion of a small
tube element placed between the planes z∗ = const.,
z∗ + dz∗ = const., θ = const. and θ + dθ = const. is
given by

−T2Λ +
∂

∂z∗

[
(r0 + u∗)

Λ
∂u∗

∂z∗
T1

]
+ P∗(r0 + u∗) =

ρ0
HR0

λz

∂2u∗

∂t∗2 ,

(5)

where ρ0 is the mass density of the tube, P∗ is the total
fluid pressure and H is the initial thickness of the tube.
Here, to be consistent with soft biological tissues, we
assume that the tube material is incompressible.

Let µΣ(λ1,λ2) be the strain energy density function
of the tube material, where µ is the shear modulus of

the tube material. Then the membrane forces are ex-
pressed as

T1 = µ
H
λ2

∂Σ
∂λ1

, T2 = µ
H
λ1

∂Σ
∂λ2

. (6)

Introducing (6) into (5) the equation of motion in the
radial direction reads

P∗ =
µH

λz(r0 + u∗)
∂Σ
∂λ2

− µR0H
(r0 + u∗)

∂
∂z∗

{
∂u∗/∂z∗

[1 +(∂u∗/∂z∗)2]1/2

∂Σ
∂λ1

}

+
ρ0HR0

λz(r0 + u∗)
∂2u∗

∂t∗2 .

(7)

This gives the relation between the radial displacement
and the inner pressure applied by the fluid.

2.2. Equations of the Fluid

Although blood is known to be an incompressible
viscous fluid, as pointed out by Rudinger [9] in a num-
ber of applications, e. g. flow in large blood vessels, as
a first approximation, the effect of viscosity may be ne-
glected. As a result of this simplifying assumption, the
variation of the field quantities in the radial direction
may be disregarded. However, the radial changes are
included by taking the variation of the cross-sectional
area into account. The equation of mass conservation
of the fluid may be given by

∂A∗

∂t∗
+

∂
∂z∗

(A∗w∗) = 0, (8)

where A∗ stands for the cross-sectional area of the tube
and w∗ is the axial velocity of the fluid. Recalling the
definition of A∗ in terms of the inner radius of the tube,
i. e., A∗ = π(r0 + u∗)2, (8) may be written as

2
∂u∗

∂t∗
+(r0 + u∗)

∂w∗

∂z∗
+ 2w∗ ∂u∗

∂z∗
= 0. (9)

The equation of balance of the linear momentum in the
axial direction is given by

∂w∗

∂t∗
+ w∗ ∂w∗

∂z∗
+

1
ρf

∂P∗

∂z∗
= 0, (10)

where ρf is the mass density of the fluid body.
At this stage, it is convenient to introduce the fol-

lowing non-dimensionalized quantities:

t∗ =
R0

v0
t, z∗ = R0z, u∗ = R0u, w∗ = v0w,



H. Demiray · Nonlinear Waves in Fluid-Filled Elastic Tubes 23

m =
Hρ0

R0ρf
, v2

0 =
µH
ρfR0

, P∗ = ρfv2
0(p0 + p), (11)

where v0 is the Moens-Korteweg wave speed. Intro-
ducing (11) into (7), (9) and (10), we obtain

p0 + p =
1

λz(λθ + u)
∂Σ
∂λ2

− 1
(λθ + u)

∂
∂z

{
∂u/∂z

[1 +(∂u/∂z)2]1/2

∂Σ
∂λ1

}

+
m

λz(λθ + u)
∂2u
∂t2 ,

(12)

2
∂u
∂t

+(λθ + u)
∂w
∂z

+ 2w
∂u
∂z

= 0, (13)

∂w
∂t

+ w
∂w
∂z

+
∂p
∂z

= 0. (14)

For our future purposes we need the quadratic series
expansion of the pressure in terms of the radial dis-
placement u. If this is done, from (12) we have

p = β1u + β2u2 −α0
∂2u
∂z2 −α1

(
∂u
∂z

)2

+
(

α0

λθ
−2α1

)
u

∂2u
∂z2 +

m
λθ λz

∂2u
∂t2

− m
λ 2

θ λz
u

∂2u
∂t2 ,

(15)

where the coefficients α0, α1, β1 and β2 are defined by

α0 =
1

λθ

∂Σ
∂λ1

|u=0, α1 =
1

2λθ

∂2Σ
∂λ1∂λ2

|u=0,

β1 =

(
1

λθ λz

∂2Σ
∂λ 2

1
− 1

λ 2
θ λz

∂Σ
∂λ1

)
|u=0,

β2 =
1

2λθ λz

∂3Σ
∂λ 3

1
|u=0 − β1

λθ
.

(16)

Equations (13), (14) and (15) give sufficient relations
to determine the unknowns u, w and p.

3. Interaction of Solitary Waves in Blood Vessels

We shall assume that two solitons A and B, which
are asymptotically apart from each other in the initial
state, travel toward each other. After some time they
collide and then depart. In order to analyze the effect
of the collision, we shall employ the extended PLK

perturbation method with the technique of strained co-
ordinates. According to this method we introduce the
following stretched coordinates:

ε1/2(z− cAt) = ξ − εθ (ξ ,η),

ε1/2(z+ cBt) = η − εφ(ξ ,η),

ε = k2,

(17)

where k is the wave number, cA and cB are two con-
stants to be determined from the solution, and θ (ξ ,η)
and φ(ξ ,η) are two unknown phase functions to be
determined from the solution.

We shall assume that the constants cA, cB and the
functions θ and φ can be expanded into asymptotic se-
ries in k as

cA = c0 + εcA1 + ..., cB = c0 + εcB1 + ...,

θ = θ0(η)+ εθ1(ξ ,η)+ . . . ,

φ = φ0(ξ )+ εφ1(ξ ,η)+ . . . .

(18)

Then, the partial derivatives
∂
∂z

and
∂
∂t

can be ex-

pressed as follows:

∂
∂z

= ε1/2
(

1 + ε
dθ0

dη

)
∂

∂ξ
+ ε1/2

(
1 + ε

dφ0

dξ

)
∂

∂η
,

∂
∂t

= ε1/2
[
−c0 + ε

(
−cA1 + c0

dθ0

dη

)]
∂

∂ξ

+ ε1/2
[

c0 + ε
(

cB1 − c0
dφ0

dξ

)]
∂

∂η
.

(19)

We shall further assume that the field variables u, w
and p may be expressed as asymptotic series in ε as
follows:

u = εu1 + ε2u2 + . . . , w = εw1 + ε2w2 + . . . ,

p = ε p1 + ε2 p2 + . . . .
(20)

Introducing the expansions (19) and (20) into (13) –
(15) and setting the coefficients of like powers of k
equal to zero, the following sets of differential equa-
tions are obtained:

O(ε) equations:

−2c0
∂u1

∂ξ
+ 2c0

∂u1

∂η
+ λθ (

∂w1

∂ξ
+

∂w1

∂η
) = 0,

− c0
∂w1

∂ξ
+ c0

∂w1

∂η
+

∂p1

∂ξ
+

∂p1

∂η
= 0,

p1 = β1u1.

(21)
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O(ε2) equations:

−2c0
∂u2

∂ξ
+ 2c0

∂u2

∂η
+ λθ

(
∂w2

∂ξ
+

∂w2

∂η

)
+ 2
(
−cA1 + c0

dθ0

dη

)
∂u1

∂ξ
+ 2
(

cB1 − c0
dφ0

dξ

)
∂u1

∂η

+ λθ
dθ0

dη
∂w1

∂ξ
+ λθ

dφ0

dξ
∂w1

∂η
+ u1

(
∂w1

∂ξ
+

∂w1

∂η

)
+ 2w1

(
∂u1

∂ξ
+

∂u1

∂η

)
= 0,

− c0
∂w2

∂ξ
+ c0

∂w2

∂η
+

∂p2

∂ξ
+

∂p2

∂η
+
(
−cA1 + c0

dθ0

dη

)
∂w1

∂ξ
+
(

cB1 − c0
dφ0

dξ

)
∂w1

∂η
+

dθ0

dη
∂p1

∂ξ
+

dφ0

dξ
∂p1

∂η

+ w1

(
∂w1

∂ξ
+

∂w1

∂η

)
= 0,

p2 = β1u2 + β2u2
1 −α0

(
∂2u1

∂ξ 2 + 2
∂2u1

∂ξ ∂η
+

∂2u1

∂η2

)
+

mc2
0

λθ λz

(
∂2u1

∂ξ 2 −2
∂2u1

∂ξ ∂η
+

∂2u1

∂η2

)
.

(22)

For the solution of the set (21), we shall eliminate w1
between these equations and obtain

−
(

2c0

λθ
− β1

c0

)(
∂2u1

∂ξ 2 +
∂2u1

∂η2

)

+ 2
(

2c0

λθ
+

β1

c0

)
∂2u1

∂ξ ∂η
= 0.

(23)

It can be shown that, in the longwave limit, c0 is the
phase velocity and may be given by

c2
0 =

λθ β1

2
. (24)

Then, (23) reduces to

∂2u1

∂ξ ∂η
= 0. (25)

The solution of this equation yields

u1 = U(ξ )+V(η), (26)

where U(ξ ) and V (η) are two unknown functions
whose governing equations will be obtained later.

Introducing (26) into (21) we have

w1 =
2c0

λθ
(U −V), p1 =

2c2
0

λθ
(U +V). (27)

To obtain the solution to O(ε2) order equations, we in-
troduce the solution given in (26) and (27) into (22),
which yields

2c0

λθ
(−∂u2

∂ξ
+

∂u2

∂η
)+ (

∂w2

∂ξ
+

∂w2

∂η
) = F(ξ ,η),

2c0

λθ
(
∂u2

∂ξ
+

∂u2

∂η
)+ (−∂w2

∂ξ
+

∂w2

∂η
) = G(ξ ,η),

(28)

where the functions F(ξ ,η) and G(ξ ,η) are defined by

F(ξ ,η) =
(

2
λθ

cA1
dU
dξ

− 6c0

λ 2
θ

U
dU
dξ

)
+
(
− 2

λθ
cB1

dV
dη

+
6c0

λ 2
θ

V
dV
dη

)
+
(
−4c0

λθ

dθ0

dη
+

2c0

λ 2
θ

V
)

dU
dξ

+
(

4c0

λθ

dφ0

dξ
− 2c0

λ 2
θ

U
)

dV
dη

,

G(ξ ,η) =
[(

α0

c0
− mc0

λθ λz

)
d3U
dξ 3 −

(
2β2

c0
+

4c0

λ 2
θ

)
U

dU
dξ

+
2cA1

λθ

dU
dξ

]

+
[(

α0

c0
− mc0

λθ λz

)
d3V
dη3 −

(
2β2

c0
+

4c0

λ 2
θ

)
V

dV
dη

+
2cB1

λθ

dV
dη

]

+
[
−4c0

λθ

dθ0

dη
−
(

2β2

c0
− 4c0

λ 2
θ

)
V
]

dU
dξ

[
−4c0

λθ

dφ0

dξ
−
(

2β2

c0
− 4c0

λ 2
θ

)
U
]

dV
dη

.

(29)
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The solution of the homogeneous equation given
in (28) yields the result similar to the O(ε) case. For
our future use, we need the particular solution of (28).
The particular integral of (28) gives

u2 =
λθ
8c0

{∫ η
[F(ξ ,η ′)+ G(ξ ,η ′)]dη

′

+
∫ ξ

[G(ξ ′,η)−F(ξ ′,η)]dξ
′
}

,

w2 =
1
4

{∫ η
[F(ξ ,η ′)+ G(ξ ,η ′)]dη

′

−
∫ ξ

[G(ξ ′,η)−F(ξ ′,η)]dξ
′
}

.

(30)

Introducing the expressions of F(ξ ,η) and G(ξ ,η)
into (30) we have

u2 =
λθ
8c0

[
A1(ξ )η + B2(η)ξ + A2(ξ )+ B1(η)

−C1(η)
dU
dξ

−C2(ξ )
dV
dη

+ 4
(

c0

λ 2
θ
− β2

c0

)
U(ξ )V (η)

]
,

w2 =
1
4

[
A1(ξ )η −B2(η)ξ + B1(η)−A2(ξ )

−C1(η)
dU
dξ

+C2(ξ )
dV
dη

]
,

(31)

where various functions appearing in (31) are defined
by

A1(ξ ) =
4cA1

λθ

dU
dξ

−
(

2β2

c0
+

10c0

λ 2
θ

)
U

dU
dξ

+
(

α0

c0
− mc0

λθ λz

)
d3U
dξ 3 ,

B1(η) =
(

α0

c0
− mc0

λθ λz

)
d2V
dη2 +

(
c0

λ 2
θ
− β2

c0

)
V 2,

C1(η) =
8c0

λθ
θ0 +

(
2β2

c0
− 6c0

λ 2
θ

)∫ η
V (η ′)dη ′,

A2(ξ ) =
(

α0

c0
− mc0

λθ λz

)
d2U
dξ 2 +

(
c0

λ 2
θ
− β2

c0

)
U2,

B2(η) =
4cB1

λθ

dV
dη

−
(

2β2

c0
+

10c0

λ 2
θ

)
V

dV
dη

+
(

α0

c0
− mc0

λθ λz

)
d3V
dη3 ,

C2(ξ ) =
8c0

λθ
φ0 +

(
2β2

c0
− 6c0

λ 2
θ

)∫ ξ
U(ξ

′
)dξ

′
. (32)

Since we are concerned with the localized solutions
for the field quantities U(ξ ) and V (η), these func-
tions must be bounded. As can be seen from (31)
as ξ ,η → ±∞, the solution becomes unbounded un-
less

A1(ξ ) = 0, B2(η) = 0, (33)

which yield the following ordinary differential equa-
tions for U and V :

cA1
dU
dξ

− µ1U
dU
dξ

− µ2
d3U
dξ 3 = 0, (34)

cB1
dV
dη

− µ1V
dV
dη

− µ2
d3V
dη3 = 0, (35)

where the coefficients µ1 and µ2 are defined by

µ1 =
(

λθ β2

2c0
+

5c0

2λθ

)
, µ2 =

λθ
4

(
mc0

λθ λz
− α0

c0

)
. (36)

As a matter of fact, (34) and (35) are the travelling
wave form of the Korteweg-de Vries equations given
by

∂U
∂τ

+ µ1U
∂U
∂z1

+ µ2
∂U
∂z3

1
= 0, (37)

−∂V
∂τ

+ µ1V
∂V
∂z2

+ µ2
∂3V
∂z3

2
= 0, (38)

where we have set

τ = ε3/2t, z1 = ε1/2(z− c0t),

z2 = ε1/2(z+ c0t), ξ − εθ0(η) = z1 − cA1t,

η − εφ0(ξ ) = z2 + cB1t.

(39)

Due to the existence of the functions θ0(η) and φ0(ξ ),
the wave trajectories are not straight lines in the zα ,τ
space, they are rather some curves. This is the result of
the head-on collision of waves.

Here we notice that θ0(η) and φ(ξ ) are some un-
known functions to be determined. Without losing the
generality of the problem we may set the coefficient
functions C1(η) and C2(ξ ) equal to zero, which yields
to

8c0

λθ
θ0(η)+

(
2β2

c0
− 6c0

λ 2
θ

)∫ η
V (η

′
)dη

′
= 0, (40)
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8c0

λθ
φ0(ξ )+

(
2β2

c0
− 6c0

λ 2
θ

)∫ ξ
U(ξ

′
)dξ

′
= 0. (41)

These equations make it possible to determine
the unknown functions θ0(η) and φ0(ξ ), provided
that U(ξ ) and V (η) are known. As a matter of fact,
U(ξ ) and V (η) can be obtained from the solution of
the ordinary differential equations (34) and (35). These
differential equations assume a solution of the follow-
ing form:

U = asech2λ ξ , V = bsech2µη , (42)

where a and b are the amplitudes of the solitary waves
and λ and µ are two constants to be determined from
the solution of (34) and (35). Introducing (42) into (34)
and (35) we obtain

λ =
(

µ1a
12µ2

)1/2

, µ =
(

µ1b
12µ2

)1/2

,

cA1 =
µ1a
3

, cB1 =
µ1b
3

.

(43)

Having obtained the solution for U(ξ ) and V (η),
through the use of (40) and (41) one can determine the
phase variables θ0(η) and φ0(ξ ) as

θ0(η) =
(

3
4λθ

− β2

2β1

)(
12µ2b

µ1

)1/2

tanh µη ,

φ0(ξ ) =
(

3
4λθ

− β2

2β1

)(
12µ2a

µ1

)1/2

tanhλ ξ .

(44)

Hence, up to O(ε3/2), the trajectories of the two soli-
tary waves for weak interaction are

ξ = ε1/2(z− c0t − εcA1t)

+ ε
(

3
4λθ

− β2

2β1

)(
12µ2b

µ1

)1/2

tanh µη + O(ε3/2),

η = ε1/2(z+ c0t + εcB1t)

+ ε
(

3
4λθ

− β2

2β1

)(
12µ2a

µ1

)
tanhλ ξ + O(ε3/2).

(45)

To obtain the phase shifts after the head-to-head colli-
sion of the solitary waves, we assume that the solitary
waves, characterized by A and B, are asymptotically
far from each other at the initial time (t = −∞). The
solitary wave A is at ξ = 0, η = −∞, and the solitary
wave B is at η = 0, ξ = ∞, respectively. After the head-
to-head collision (t = ∞), the solitary wave B is far to

the right of the solitary wave A, i. e., the solitary wave A
is at ξ = 0, η = ∞, and the solitary wave B is at η = 0,
ξ = −∞. For these limiting cases the trajectories (45)
become

z = (c0 + εcA1)t ± ε1/2
(

3
4λθ

− β2

2β1

)(
12µ2b

µ1

)1/2

,

z = (c0 + εcB1)t ± ε1/2
(

3
4λθ

− β2

2β1

)(
12µ2a

µ1

)1/2

.

(46)

These equations are parallel straight lines which repre-
sent the asymptotes of the corresponding trajectories.

Using (45), we obtain the corresponding phase shifts
∆A and ∆B as follows:

∆A = ε1/2(z−cAt)|ξ=0,η=∞−ε1/2(z−cAt)|ξ=0,η=−∞

= ε
(

3
2λθ

− β2

β1

)(
12µ2b

µ1

)1/2

, (47)

∆B = ε1/2(z+cBt)|η=0,ξ=−∞−ε1/2(z+cBt)|η=0,ξ=∞

= ε
(

3
2λθ

− β2

β1

)(
12µ2a

µ1

)1/2

. (48)

4. Numerical Results and Discussion

For the numerical analysis we need the constitutive
equations for the elastic tube material. For that pur-
pose we shall use the constitutive equations proposed
by Demiray [10] for soft biological tissues as

Σ =
1

2α
{exp[α(I1 −3)]−1}, (49)

where α is a material constant and I1 is the first in-
variant of the Finger deformation tensor and defined
by I1 = λ 2

z + λ 2
θ + 1/λ 2

z λ 2
θ . Introducing (49) into (23),

the coefficients α0, β0, β1 and β2 are obtained as:

α0 =
(

λ 2
z − 1

λ 2
θ λ 2

z

)
F(λθ ,λz),

β0 =
(

1
λz

− 1
λ 4

θ λ 3
z

)
F(λθ ,λz),

β1 =
[

4
λ 5

θ λ 3
z

+ 2
α

λθ λz

(
λθ − 1

λ 3
θ λ 2

z

)2]
F(λθ ,λz),

β2 =
[
− 10

λ 6
θ λ 3

z
+

α
λθ λz

(
5 +

7
λ 4

θ λ 2
z

)(
λθ − 1

λ 3
θ λ 2

z

)

+ 2
α2

λθ λz

(
λθ − 1

λ 3
θ λ 2

z

)3]
F(λθ ,λz), (50)
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Fig. 1. Variation of a trajectory
for ξ0 = 1.0.

where the function F(λθ ,λz) is defined by

F(λθ ,λz) = exp
[

α
(

λ 2
θ + λ 2

z +
1

λ 2
θ λ 2

z
−3
)]

. (51)

This theoretical model was compared by Demiray [11]
with the experimental measurements by Simon et
al. [12] on a canine abdominal artery with the char-
acteristics Ri = 0.31 cm, R0 = 0.38 cm and λz = 1.53,
and the value of the material constant α was found to
be α = 1.948. Using this value of the material constant
and 1.6 for λθ = λz, the coefficients α0, β1, β2, µ1,
µ2 were calculated. The result is

α0

β1
= 0.266,

β2

β1
= 3.348,

µ1 = 4.911, µ2 = −0.0363.

Setting ε = 0.5 and the wave amplitudes a = −1, b =
−2, the phase functions ξ and η take the forms

ξ = 0.707(z−16.21t)−0.606tanh(4.748η), (52)

η = 0.707(z+17.21t)−0.429tanh(3.358ξ ). (53)

As is seen from these expressions the trajectories are
not straight lines anymore, they are rather some curves
in the (z, t) plane.

Setting ξ = ξ0 in (52) and (53) we obtain

ξ0 = 0.707(z−16.21t)−0.606tanh(4.748η),

η = 0.707(z+ 17.21t)−0.429tanh(3.358ξ0).
(54)

This gives the equation of the trajectory for ξ = ξ0.
For large values of η (η →±∞), (52) becomes

ξ0 = 0.707z−11.46t±0.606. (55)

These are the equations of the asymptotes, which are
parallel lines of the trajectory. Similarly, the equation
of the trajectory for η = η0 may be obtained as

ξ = 0.707(z−16.21t)−0.606tanh(4.748η0),
η0 = 0.707(z+ 17.21t)−0.429tanh(3.358ξ ).

(56)

For large values of ξ (ξ →±∞), (56) becomes

η0 = 0.707z+ 12.167t±0.429. (57)

The trajectories are plotted numerically and the results
are depicted on Figs. 1 and 2 for ξ0 = 1.0 and η0 = 1.0.
As can be seen from these figures, for large values of ξ
and η the trajectories are two parallel lines, but during
the collision it becomes a sharp curve that connects
these two lines. This means that, when the collision
process is completed, there will be a phase shift.

5. Conclusion

By use of the extended PLK perturbation method,
the head-to-head collision of two solitary waves in
an artery is investigated. The result obtained shows
that, up to O(k4), the head-to-head collision of
two blood solitons is elastic and the solitons pre-
serve their original properties after the collision. The
leading order analytical phase shifts of a head-to-head
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Fig. 2. Variation of a trajectory
for η0 = 1.0.

collision between two solitary waves are explicitly de-
rived. The higher-order corrections may give some sec-
ondary structures in the collision event, especially for
the large amplitude case.
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